بررسی اثر ریخته باکتری لاکتوپنئوس اسیدوفیلوس دستگاه کوارش میگوی یا سفید غربی (Litopenaeus vannamei)

چکیده
این تحقیق به منظور بررسی تأثیر باکتری لاکتوپنئوس اسیدوفیلوس و غلظت مناسب آر اجرا گردید. در این آزمایش لاکتوپنئوس جدا شده از دستگاه کوارش میگوی یا سفید حاوی نجای پلت میگوی به عنوان بروپنیتک اضافه گردید. با خشونت غلظتی میگوی سوساپنیک لاکتوپنئوس. به جهت بررسی غلظت‌های مختلف لاکتوپنئوس این ارگ در کل و نیمه در ید شماره 10 غلظت‌ها به شکل عضلات در پلش شده بودند. متغیر آزمایش و روزهای پایه تی منابع گروه غلظت‌ها به شکل عضلات در پلش شده بودند. متغیر آزمایش و روزهای پایه تی منابع گروه

مهم‌های جهانی:
1. دانشگاه آزاد اسلامی واحد اهواز، دانشجوی
2. دانشگاه جامع علمی کاربردی، استادگر گروه شیلات، پزشک ایران
3. موسسه تحقیقات آزمایشی جنوب‌کشور
استادیاری خشایار ذکری، اهواز، ایران

منابع مکتوبات:
mehdi168@gmail.com

تاریخ دریافت: 1391/12/13
تاریخ پذیرش: 1391/8/1

مقدمه
میگوی یا سفید غربی (Litopenaeus vannamei) یکی از محصولات بالاریزه بالای انیزی پروپنیتک است. تولید ترکمک میگوی یا سفید غربی در سال‌های اخیر در سراسر جهان در حال گسترش است (FAO, 2007). در حال حاضر هزینه گروه غلظت در بالای ۴۰۰ درصد از هزینه پروپنیتک باقتی با سه غلظت جهانی در بر برمی‌گردد (New et al., 2010). بررسی منابع و استفاده از بروپنیتک (Probiotic) در سال‌های اخیر بسیار بهتر توجه قرار گرفته است (et al., 2000; keysamiet al., 2007)

برای تولید غلظت و رشد پروپنیتک، یکی از لیستی از بروپنیتک‌ها موجود به‌عنوان: چکند لاکتوپنئوس اسیدوفیلوس و دارد در صورت گرفتن باکتری آزمایش، نتیجه که با اضافه رشد، دستگاه کوارش میگوی یا سفید غربی (Litopenaeus vannamei) به یک غلظت می‌باشد. در حال حاضر هزینه گروه غلظت در بالای ۴۰۰ درصد از هزینه پروپنیتک باقتی با سه غلظت جهانی در بر برمی‌گردد (New et al., 2010). بررسی منابع و استفاده از بروپنیتک (Probiotic) در سال‌های اخیر بسیار بهتر توجه قرار گرفته است (et al., 2000; keysamiet al., 2007)

برای تولید غلظت و رشد پروپنیتک، یکی از لیستی از بروپنیتک‌ها موجود به‌عنوان: چکند لاکتوپنئوس اسیدوفیلوس و دارد در صورت گرفتن باکتری آزمایش، نتیجه که با اضافه رشد، دستگاه کوارش میگوی یا سفید غربی (Litopenaeus vannamei) به یک غلظت می‌باشد. در حال حاضر هزینه گروه غلظت در بالای ۴۰۰ درصد از هزینه پروپنیتک باقتی با سه غلظت جهانی در بر برمی‌گردد (New et al., 2010). بررسی منابع و استفاده از بروپنیتک (Probiotic) در سال‌های اخیر بسیار بهتر توجه قرار گرفته است (et al., 2000; keysamiet al., 2007)
تأثیر باکتری‌های پروپیوتیک‌ها بر روی آزمایشگاهی و سیستم در شرایط کارگاهی آزمایش شود. از طرف دیگر اگر قرار است پروپیوتیک‌ها در عناصر مصرف شود، باید آن را هم در غذا و هم در محیط پوست زدن وارد نمود و اثر بخشی از روز رشد و درصد باقی آن از زایای گردید. گرچه ارتباط بین پروپیوتیک‌ها و آزمایشگاهی قابل در ماهی، دام و ماهی‌گیری آزمایش شده، ولی اثر بخشی آن در آزمایشگاهی و درصد موجود بوده است از آزمایشگاهی (Keysami et al., 2007). می‌تواند که شکل‌های آزمایشگاهی (Lactobacillus) و مخلوط باکتری‌ها (Saccharomysis)، ساکارومایسیس (Abraham, 2008) را بیشتری در انواع مایه‌ها، اجزای غذای مصرف شوند می‌تواند میکروب‌های زندگی‌های زندگی هستند که بیشتر بر پژوهش (FAO/WHO, 2001) تحقیق برای بررسی اثر بخشی و بیا کردن غذای مصرف آزمایشگاهی فهرست یه اندیشی (Keysami et al., 2007 Sotomayor 2003; Salinas et al., 2005; Aleyn et al.)

به‌طور معمول است که باکتری‌ها به عنوان پروپیوتیک‌ها بر می‌روند باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)

به‌طور معمول است که باکتری‌های اسید لاکتواسیسی ساخته شده (Bacillus) که شامل لاکتواسیسیوس، بیفیلدوبکتریوم (Irianco and استرتوکوکوس (Streptococcus) (Keysami et al., 2008)
جدول 1: جهت‌های غذایی مورد استفاده با غلظت‌های مختلف لاکتوباسیلوس اسیدوفلوس در میکوی یافتن‌گری (Litopenaeus vannamei) در دوسرال 1390

<table>
<thead>
<tr>
<th>تیمار</th>
<th>تکرار</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>40</td>
</tr>
<tr>
<td>PF1</td>
<td>10</td>
</tr>
<tr>
<td>PF2</td>
<td>10</td>
</tr>
<tr>
<td>PF3</td>
<td>10</td>
</tr>
<tr>
<td>PF4</td>
<td>10</td>
</tr>
<tr>
<td>PF5</td>
<td>10</td>
</tr>
<tr>
<td>مجموع</td>
<td>100</td>
</tr>
</tbody>
</table>

صورت 12 ساعت روشنایی و 12 ساعت تاریکی با نور لامپ مهتاب در نظر گرفته شد. هر دو هفته یک بار وزن 10 میگوی نمونه‌برداری شده از تاکه‌ها انداره‌گیری شده و درصد بقای میگوها با جمع‌آوری لفته آکواریومشان به طور روزانه برآورده گردید.

یک گونه لاکتوباسیلوس اسیدوفلوس که در طرح جدایانه‌ای از دستگاه گوارش همین میگو روحی حیاتی كشت اختصاصی لاکتوباسیلوس من روکش آثار جداسازی شده و دارای بیشترین خاصیت انتانی به‌کارگیری براساس روش انتشار در دیسک (برایه‌پیمانی گروه که در مرکز آموزش عالی فارس شهر تهران شده و برای استفاده در این تحقیق در نظر گرفته شد. از طبق آزمایش این یک‌گروه را کم می‌داند. میلهای کنار و کاتالیز میثیت بود. آن گونه به علت لاکتوباسیلوس اسیدوفلوس با استفاده از روکش‌های بیوشیمایی و با استفاده از نرم‌افزار بیولوگ ساخته شده است که تا به ازابیوباین

(Biolog, Inc. California, USA) گردید (در نظر گرفته شده باید این است که ممکناً به نظر می‌رسد که دسته چهار غلظتهای بالا، اثر بخشی ندارد از طرف دیگر در هنگام کاربرد غذا در آب بخشی از یک‌گروه در آب حل شده و از

2007

Nikoskelainen et al., 2001; Meunpol et al., 2003; Keysami et al., 2007)

برنامه‌های غذایی مورد استفاده با غلظت‌های مختلف لاکتوباسیلوس اسیدوفلوس در میکوی یافتن‌گری (Litopenaeus vannamei) در دوسرال 1390

<table>
<thead>
<tr>
<th>تیمار</th>
<th>تکرار</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>40</td>
</tr>
<tr>
<td>PF1</td>
<td>10</td>
</tr>
<tr>
<td>PF2</td>
<td>10</td>
</tr>
<tr>
<td>PF3</td>
<td>10</td>
</tr>
<tr>
<td>PF4</td>
<td>10</td>
</tr>
<tr>
<td>PF5</td>
<td>10</td>
</tr>
<tr>
<td>مجموع</td>
<td>100</td>
</tr>
</tbody>
</table>

صورت 12 ساعت روشنایی و 12 ساعت تاریکی با نور لامپ مهتاب در نظر گرفته شد. هر دو هفته یک بار وزن 10 میگوی نمونه‌برداری شده از تاکه‌ها انداره‌گیری شده و درصد بقای میگوها با جمع‌آوری لفته آکواریومشان به طور روزانه برآورده گردید.

یک گونه لاکتوباسیلوس اسیدوفلوس که در طرح جدایانه‌ای از دستگاه گوارش همین میگو روحی حیاتی كشت اختصاصی لاکتوباسیلوس من روکش آثار جداسازی شده و دارای بیشترین خاصیت انتانی به‌کارگیری براساس روش انتشار در دیسک (برایه‌پیمانی گروه که در مرکز آموزش عالی فارس شهر تهران شده و برای استفاده در این تحقیق در نظر گرفته شد. از طبق آزمایش این یک‌گروه را کم می‌داند. میلهای کنار و کاتالیز میثیت بود. آن گونه به علت لاکتوباسیلوس اسیدوفلوس با استفاده از روکش‌های بیوشیمایی و با استفاده از نرم‌افزار بیولوگ ساخته شده است که تا به ازابیوباین

(Biolog, Inc. California, USA) گردید (در نظر گرفته شده باید این است که ممکناً به نظر می‌رسد که دسته چهار غلظتهای بالا، اثر بخشی ندارد از طرف دیگر در هنگام کاربرد غذا در آب بخشی از یک‌گروه در آب حل شده و از

2007

Nikoskelainen et al., 2001; Meunpol et al., 2003; Keysami et al., 2007)
بررسی ارتباطی بینکریک لاکتوپالسوس اسیدوفیلوس دستگاه گوارش میگوی پا سفید گرید

فیزیولوژی درون باکتری به عنوان شاهد تهیه گردیدن. این جریه به ترتیب شاخص در (Keysami et al., 2012) مانند گزارشاتی که در مورد تولید چربی‌های خاص در میکوو با محیط کشت مربوط به میکرو‌گیا و روی هوازی پرونده داده شد که این جای‌گیریه شدا بر اثر شرایط تغییرات هوا در طول زمان می‌باشد.

номونه لاکتوپالسوس اسیدوفیلوس به محیط کشت تلقیح شده و در دوم دهم در گزارش میکرو‌گیا و روی هوازی پرونده داده شد که این جای‌گیریه شدا بر اثر شرایط تغییرات هوا در طول زمان می‌باشد.

جدول 2: ترکیبات پروپیمیکی جریه‌های تهیه شده از غلظت‌های مختلف لاکتوپالسوس اسیدوفیلوس

(میانگین انحراف معیار) در سال ۱۳۹۰

<table>
<thead>
<tr>
<th></th>
<th>PF۳</th>
<th>PF۴</th>
<th>PF۵</th>
<th>PF۶</th>
<th>CF</th>
</tr>
</thead>
</table>

حرف غیر همسان در هر ریفت نشان اکتشافاتی است که در (P<0/05)

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>%w</th>
<th>76/۱۰</th>
<th>76/۱۰</th>
<th>76/۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروپتین خام</td>
<td>CF</td>
<td>۸۱/۱۰</td>
<td>۸۱/۱۰</td>
<td>۸۱/۱۰</td>
<td></td>
</tr>
<tr>
<td>زون خشک DM</td>
<td></td>
<td>۸۱/۱۰</td>
<td>۸۱/۱۰</td>
<td>۸۱/۱۰</td>
<td></td>
</tr>
</tbody>
</table>

متغیرهای آزمایش‌های توانایی استفاده از فرمول‌های زیر بسته آمد

(Felix and Sudharsan, 2004)

<table>
<thead>
<tr>
<th></th>
<th>۱۰۰%</th>
<th>۱۰۰%</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن آغازی مجموع غنای داده شده (گرم)</td>
<td>ضریب تبدیل غنایی وزن تر (گرم)</td>
<td></td>
</tr>
<tr>
<td>لگاریتم نیبر وزن نهایی - لگاریتم نیبر وزن آغازی</td>
<td>ضریب رشد وزه تقویمی</td>
<td></td>
</tr>
</tbody>
</table>

طول فرد ورونشت

<table>
<thead>
<tr>
<th></th>
<th>۱۰۰%</th>
<th>۱۰۰%</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد میگوی بالای ماده در یک پایان ازمایش</td>
<td>تعداد میگوی بالای ماده در یک پایان ازمایش</td>
<td></td>
</tr>
</tbody>
</table>

میکرو‌گیا رشد میگوی زیر استفاده از فرمول‌های زیر بسته آمد

(Felix and Sudharsan, 2004)

<table>
<thead>
<tr>
<th></th>
<th>۱۰۰%</th>
<th>۱۰۰%</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن آغازی مجموع غنای داده شده (گرم)</td>
<td>ضریب تبدیل غنایی وزن تر (گرم)</td>
<td></td>
</tr>
<tr>
<td>لگاریتم نیبر وزن نهایی - لگاریتم نیبر وزن آغازی</td>
<td>ضریب رشد وزه تقویمی</td>
<td></td>
</tr>
</tbody>
</table>

طول فرد ورونشت
النَجَيَن
نَجَد ۲، تَرْکَب بیوشیمای عضله بدن میگوی با سَفید غریب (L. vannamei) (SD) یکی از گونه‌های یکی از گونه‌های اصلی است. SPSS.

جدول ۳: ترکب بیوشیمای عضله بدن میگوی با سفید غریب (L. vannamei) (SD) تغذیه شده بدن کفیه غذای با غلظت مختل لاکتواسپیلس اسیدوفیلوس (۱۲۰۰)

<table>
<thead>
<tr>
<th>متغیر</th>
<th>CF اولیه</th>
<th>اولیه</th>
<th>CF اولیه</th>
<th>اولیه</th>
<th>CF اولیه</th>
<th>اولیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>پروتئین خام</td>
<td>۴۶/۱۰۰±۱/۶</td>
<td>۴۶/۱۰۰±۱/۶</td>
<td>۴۶/۱۰۰±۱/۶</td>
<td>۴۶/۱۰۰±۱/۶</td>
<td>۴۶/۱۰۰±۱/۶</td>
<td>۴۶/۱۰۰±۱/۶</td>
</tr>
<tr>
<td>چربی خام</td>
<td>۳۰/۱۰۰±۱/۶</td>
<td>۳۰/۱۰۰±۱/۶</td>
<td>۳۰/۱۰۰±۱/۶</td>
<td>۳۰/۱۰۰±۱/۶</td>
<td>۳۰/۱۰۰±۱/۶</td>
<td>۳۰/۱۰۰±۱/۶</td>
</tr>
<tr>
<td>تانین</td>
<td>۱۴/۱۰۰±۱/۶</td>
<td>۱۴/۱۰۰±۱/۶</td>
<td>۱۴/۱۰۰±۱/۶</td>
<td>۱۴/۱۰۰±۱/۶</td>
<td>۱۴/۱۰۰±۱/۶</td>
<td>۱۴/۱۰۰±۱/۶</td>
</tr>
<tr>
<td>چربی خام</td>
<td>۸۰/۱۰۰±۱/۶</td>
<td>۸۰/۱۰۰±۱/۶</td>
<td>۸۰/۱۰۰±۱/۶</td>
<td>۸۰/۱۰۰±۱/۶</td>
<td>۸۰/۱۰۰±۱/۶</td>
<td>۸۰/۱۰۰±۱/۶</td>
</tr>
<tr>
<td>رطوبت</td>
<td>۸۰/۱۰۰±۱/۶</td>
<td>۸۰/۱۰۰±۱/۶</td>
<td>۸۰/۱۰۰±۱/۶</td>
<td>۸۰/۱۰۰±۱/۶</td>
<td>۸۰/۱۰۰±۱/۶</td>
<td>۸۰/۱۰۰±۱/۶</td>
</tr>
</tbody>
</table>
| هم‌جمه علی - پژوهشی زیست شناسی دریا / دانشگاه آزاد اسلامی واحد اهواز (۱۳۹۱)
پروتئین خام در حدود 23/39 ± 2/52 درصد بوده است.

همچنین میزان کربن در حدود 26/32 ± 1/5 درصد متفاوت بود. برابرین و پایین‌ترین میزان پروتئین بافت‌ها برابری تریب PF با فاکتور درصد و PF رفت و 46 درصد بوده است. میزان کربن در PF مورد شاهد 26/73 ± 1/7 درصد برابری در تیمار PF بود.

جدول 2: نتایج شاخص‌های رشد به میکوی پاسید غربی جوان (Litopenaeus vannamei) در غله‌های مختلف لاکتوپسرلبداسپیدوفیلز (1990)

<table>
<thead>
<tr>
<th>شاخص رشد</th>
<th>شاهد</th>
<th>تیمار 1</th>
<th>تیمار 2</th>
<th>تیمار 3</th>
<th>تیمار 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF 5 (mg)</td>
<td>2/11 ± 7/76</td>
<td>1/177 ± 2/25</td>
<td>2/138 ± 4/12</td>
<td>2/136 ± 4/89</td>
<td>2/166 ± 8/3</td>
</tr>
<tr>
<td>PF 4 (mg)</td>
<td>3/97 ± 1/7</td>
<td>2/145 ± 1/24</td>
<td>2/117 ± 1/24</td>
<td>2/115 ± 1/24</td>
<td>2/184 ± 8/3</td>
</tr>
<tr>
<td>PF 3 (mg)</td>
<td>3/97 ± 1/7</td>
<td>2/152 ± 1/24</td>
<td>2/117 ± 1/24</td>
<td>2/115 ± 1/24</td>
<td>2/184 ± 8/3</td>
</tr>
<tr>
<td>PF 2 (mg)</td>
<td>3/97 ± 1/7</td>
<td>2/152 ± 1/24</td>
<td>2/117 ± 1/24</td>
<td>2/115 ± 1/24</td>
<td>2/184 ± 8/3</td>
</tr>
<tr>
<td>PF 1 (mg)</td>
<td>3/97 ± 1/7</td>
<td>2/152 ± 1/24</td>
<td>2/117 ± 1/24</td>
<td>2/115 ± 1/24</td>
<td>2/184 ± 8/3</td>
</tr>
</tbody>
</table>

درصد افزایش وزن

<table>
<thead>
<tr>
<th>ضریب تانیت بیوتیئن (PER)</th>
<th>ضریب رشد وزنه (SGR)</th>
<th>ضریب رشد (PER)</th>
<th>PF 4 (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/04 ± 0/01</td>
<td>0/04 ± 0/01</td>
<td>0/04 ± 0/01</td>
<td>0/04 ± 0/01</td>
</tr>
<tr>
<td>0/04 ± 0/01</td>
<td>0/04 ± 0/01</td>
<td>0/04 ± 0/01</td>
<td>0/04 ± 0/01</td>
</tr>
<tr>
<td>0/04 ± 0/01</td>
<td>0/04 ± 0/01</td>
<td>0/04 ± 0/01</td>
<td>0/04 ± 0/01</td>
</tr>
<tr>
<td>0/04 ± 0/01</td>
<td>0/04 ± 0/01</td>
<td>0/04 ± 0/01</td>
<td>0/04 ± 0/01</td>
</tr>
</tbody>
</table>

ضریب تانیت بیوتیئن (PER) در سایر رشته‌های افزایش وزن و رشد و رشد وزنه، افزایش و رشد و رشد وزنه، افزایش وزن و رشد و رشد وزن
جدول ۵: لگاریتم تعداد باکتری‌های شمارش‌شده از دستگاه گوارش میگوی‌های پاسفید غربی (Litopenaeus vannamei) تغذیه شده با غلظت‌های مختلف لاتوپاسیلوس اسیدفیلونوس (۱۳۹۰)

<table>
<thead>
<tr>
<th>شاخص</th>
<th>زمان (ساعت) (CFU/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>لگاریتم شمارش باکتری‌های کل</td>
<td>۰<sup>1</sup> ۵<sup>2</sup> ۲۰<sup>3</sup></td>
</tr>
<tr>
<td>لگاریتم باسپلوس شمارش شده</td>
<td>۰<sup>1</sup> ۵<sup>2</sup> ۲۰<sup>3</sup></td>
</tr>
<tr>
<td>لگاریتم باکتری‌های گرم منفی شمارش شده</td>
<td>۰<sup>1</sup> ۵<sup>2</sup> ۲۰<sup>3</sup></td>
</tr>
</tbody>
</table>

جدول ۶: لگاریتم تعداد باکتری‌های شمارش‌شده از مصرف میگوی پاسفید غربی (Litopenaeus vannamei) تغذیه شده با غلظت‌های مختلف لاتوپاسیلوس اسیدفیلونوس (۱۳۹۰)

<table>
<thead>
<tr>
<th>شاخص</th>
<th>زمان (ساعت) (CFU/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>لگاریتم شمارش باکتری‌های کل</td>
<td>۰<sup>1</sup> ۵<sup>2</sup> ۲۰<sup>3</sup></td>
</tr>
<tr>
<td>لگاریتم باسپلوس شمارش شده</td>
<td>۰<sup>1</sup> ۵<sup>2</sup> ۲۰<sup>3</sup></td>
</tr>
<tr>
<td>لگاریتم باکتری‌های گرم منفی شمارش شده</td>
<td>۰<sup>1</sup> ۵<sup>2</sup> ۲۰<sup>3</sup></td>
</tr>
</tbody>
</table>
میانگین کل باکتری‌های دستگاه گوارش میکوای ۴/۱ ±۲/۷/۲±۱/۸۲ و در تمرین ۷/۲/۰۰۰۰۰۰۱ افزای شده است. ترکم لدکنوسیلوس در گروه شاده افزایش نشان داد. ترکم باکتری‌های گرم منفی در گروه‌های تیمار در دخله ۳۰۰۰۰۰۰۰۰۰۰۰۰ روز غادهی به ۴/۱±۲/۷/۲±۱/۸۲ سولو در میلی‌لیتر بافت. در میانگین ترکم باکتری‌های گرم منفی در تئکه‌های شاده ۳/۰±۲/۷/۲±۱/۸۲ در میلی‌لیتر افزایش نشان داد.

بحث و تجهیز گیری
کشفیات آب پورش‌ها در این تحقیق بر اساس از لدکنوسیلوس نیز تغییرات معنی‌داری در تیمارها مختلف از خود نشان داد. تغییرات مشاهده شده در تئکه‌های مطلوب نسبت به گروه کنترل نتایج آنالیزهای آماری که در این تحقیق انجام شده، نشان دهنده استفاده از لدکنوسیلوس نیز در بهبود صحت افراد مبتلا به این بیماری می‌باشد. بنابراین، باید از لدکنوسیلوس نیز در بهبود صحت افراد مبتلا به این بیماری استفاده شود.

Keysami et al., 2012.

کنترل مربوط باشید (2012)

خاصیت پرهیزیکی لدکنوسیلوس اسیدفیلوس از افزایش وزن و ضریب تبدیل غذایی مناسب‌تری که در تیمارها نسبت به شاهد به این امر بیش از ۲/۳ روی در افزایش وزن، ضریب رشد وزنه، جنب غذا و ضریب تبدیل غذایی بین تیمارها و شاهد نشان داد. تغییرات مشاهده شده در بهبود رشد و Balczar و همکاران (۲۰۰۴) گزارش کردند. بود لدکنوسیلوس اسیدفیلوس با حفظ باکتری‌های گرم منفی و جابجایی در دستگاه گوارش و از طریق فعالیت آنزیمی و تولید املاح غذایی در
مشابهات

A Study On Effectiveness Of *Lactobacillus acidophilus* On Survival And Growth of *Litopenaeus vannamei* in In-vitro

Abstract

A feeding experiment was conducted to investigate the effect of *L. acidophilus* bacterium and its suitable level on survival and growth rate of juvenile *Litopenaeus vannamei* during on 22 November 2010 to 23 September 2011. A *L. acidophilus* bacterium isolated from shrimp intestine was added to commercial shrimp feed as a probiotic. Six diets were prepared by soaking shrimp feed in to the *L. acidophilus* to achieve 10^{10}, 10^9, 10^8, 10^7 and 10^6 levels with a non-treated control. After 60 days, the shrimp fed diet at level 10^8, showed a higher mean weight gain (593.45 g) or 170.29% increase in growth over control. The mean weight gain showed a decreasing trend as the *L. acidophilus* level decreased from 10^8 to 10^6 and the *Lacitobacillus* level increased from 10^8 to 10^{10} in the diets. There were significant differences (P<0.05) in weight gain, feed intake, daily growth and feed conversion ratio (FCR) among treated and control groups. There were significant differences (P<0.05) among treatments and control in survival rate but no significant differences (P>0.05) in water quality and biochemical composition among treated and control groups. Clearly, treated with *L. acidophilus* appeared to enhance growth and survival of *Litopenaeus vannamei*. It was concluded that the tested strain may be a promising probiotics for *Litopenaeus vannamei* at a level of 10^8 *L. acidophilus* in to the prawn feed.

Key Words: *L. acidophilus*, *Litopenaeus vannamei*, level of probiotic, survival shrimp and grow